A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New integral inequalities for $s$-preinvex functions

In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.

متن کامل

On Hadamard Integral Inequalities Involving Two Log-preinvex Functions

In this paper, we establish some new Hermite-Hadamard type integral inequalities involving two log-preinvex functions. Note that log-preinvex functions are nonconvex functions and include the log-convex functions as special cases. As special cases, we obtain the well known results for the convex functions.

متن کامل

On Strongly Generalized Preinvex Functions

In this paper, we define and introduce some new concepts of strongly φ-preinvex (φ-invex) functions and strongly φη-monotone operators. We establish some new relationships among various concepts of φ-preinvex (φ-invex) functions. As special cases, one can obtain various new and known results from our results. Results obtained in this paper can be viewed as refinement and improvement of previous...

متن کامل

Coefficient bounds for a new class of univalent functions involving Salagean operator and the modified Sigmoid function

We define a new subclass of univalent function based on Salagean differential operator and obtained the initial Taylor coefficients using the techniques of Briot-Bouquet differential subordination in association with the modified sigmoid function. Further we obtain the classical Fekete-Szego inequality results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2020

ISSN: 1687-1847

DOI: 10.1186/s13662-020-03036-7